

 ARL-TR-7574 ● JAN 2016

 US Army Research Laboratory

An Analysis Platform for Mobile Ad Hoc
Network (MANET) Scenario Execution Log
Data

by Jaime C Acosta and Yadira Jacquez

Approved for public release; distribution is unlimited

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7574 ● JAN 2016

 US Army Research Laboratory

An Analysis Platform for Mobile Ad Hoc
Network (MANET) Scenario Execution Log
Data

by Jaime C Acosta and Yadira Jacquez
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2015–August 2015
4. TITLE AND SUBTITLE

An Analysis Platform for Mobile Ad Hoc Network (MANET) Scenario
Execution Log Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jaime C Acosta and Yadira Jacquez
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Cybersecurity and Electromagnetic Protection Division
Survivability/Lethality Analysis Directorate (ATTN: RDRL-SLE-I)
White Sands Missile Range, NM 88002-5513

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7574

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Generating models from observed binary behavior, both static and dynamic, can result in more efficient and accurate network
system security analysis. Previous work in execution-based model generation has shown success for routing attacks, but
requires a large amount of manual and expert-level intervention due to the lack of a graphical analysis platform. This technical
report describes the ongoing work to build scenario execution data analysis platform, which is a plugin-based platform that
provides a flexible and efficient mechanism for the model generation process. This platform consists of a web portal that
allows analysts to set up network scenarios, view resultant data, and execute analysis algorithms.
15. SUBJECT TERMS

emulation, simulation, execution-based model generation, MANET, mobile ad hoc network, scenario execution data analysis
platform, SEDAP

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

46

19a. NAME OF RESPONSIBLE PERSON

Jaime C Acosta
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(575) 678-8115
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures vi

List of Tables vii

Acknowledgements viii

1. Introduction 1

1.1 Problem 1

1.2 Approach 1

1.3 Objectives 2

2. Analysis of the Experimental Workflow 3

2.1 Collecting Data with CORE 4

2.1.1 CORE Data File 5

2.1.2 Capture File (Raw Data) 5

2.1.3 Mgencapture File (Raw Data) 6

2.2 Using WEKA to Generate Model 6

2.2.1 Attribute-Relation File Format (Arff) File 8

2.3 Observations 8

3. SEDAP 8

3.1 Data Parsing 8

3.2 Conflict Detection 9

3.3 Scenario Automation 10

4. Technologies 11

4.1 Backend Technologies 11

4.2 Frontend Technologies 11

4.3 Database 11

5. Database 11

5.1 Database Schema 11

iv

5.2 Database Table Catalog 12

5.2.1 Arff 12

5.2.2 Capture 14

5.2.3 CaptureFlows 14

5.2.4 Conflict 15

5.2.5 MgenCapture 15

5.2.6 MgenCaptureFlows 16

5.2.7 Routes 16

5.2.8 User 17

5.3 Initial Database Load 17

6 Backend 17

6.1 File Structure 17

6.2 Architecture 18

6.3 Module Catalog 19

6.3.1 LogParser.java 19

6.3.2 ConflictDetector.java 19

6.3.3 LogDatabase.java 19

6.3.4 RunScenario.java 19

6.3.5 NewScenario.java 19

6.3.6 RunConflictDetector.java 20

7. Frontend 20

7.1 File Structure 20

7.2 Architecture 20

7.3 Connection Catalog 21

7.3.1 dbconnect 21

7.3.2 DetectConflict 21

7.3.3 RawDataWindow 24

7.3.4 ScenarioResults 24

7.3.5 runConflictDetector 24

7.3.6 runNewScenario 25

8. Use Case 25

8.1 Executing a New Scenario 25

v

8.2 View Results and Raw Data 28

8.3 Run Conflict Detector 30

8.4 View Conflicts 32

9. Conclusions 32

10. References 33

List of Symbols, Abbreviations, and Acronyms 34

Distribution List 35

vi

List of Figures

Fig. 1 Experimentation workflow ..2

Fig. 2 CORE scenario screenshot ...5

Fig. 3 Log directory structure ...5

Fig. 4 WEKA preprocess window..7

Fig. 5 WEKA classify window ..7

Fig. 6 Pseudo code for the conflict detection algorithm9

Fig. 7 SEDAP object diagram ..12

Fig. 8 SEDAP backend module diagram ...18

Fig. 9 SEDAP web service diagram ...21

Fig. 10 SEDAP navigation pane New Scenario tab ...25

Fig. 11 SEDAP New Scenario page ...26

Fig. 12 SEDAP victim node selection ..26

Fig. 13 CORE executive indicator ...27

Fig. 14 CORE executive completed indicator ..27

Fig. 15 SEDAP View Results pane ..27

Fig. 16 SEDAP Results page..28

Fig. 17 SEDAP results field filter ..28

Fig. 18 SEDAP raw node data selection ..29

Fig. 19 SEDAP raw data window ..30

Fig. 20 SEDAP Conflict Detection page ..31

Fig. 21 SEDAP conflict detection execution indicator31

Fig. 22 SEDAP conflict detection completed indicator31

Fig. 23 SEDAP detailed conflict drop-down view ...32

vii

List of Tables

Table 1 Arff table fields ..13

Table 2 Capture table fields ..14

Table 3 Captureflows table fields ...15

Table 4 MgenCapture table fields ...15

Table 5 MgenCaptureFlows table fields ...16

Table 6 Routes table fields ..16

Table 7 User table fields ...17

viii

Acknowledgements

This work was completed as part of the US Army Research Laboratory,
Survivability/Lethality Analysis Directorate and the University of Texas at El Paso
(UTEP) open campus initiative. From UTEP, we would like to thank Dr Salamah
Salamah and Adrian Garcia for their help with this work.

1

1. Introduction

1.1 Problem

Testing the security posture of network systems is a critical step in the Army
acquisition lifecycle. While field tests are necessary because they provide the
highest level of accuracy, they are very costly, limited in duration, and are difficult
to coordinate. For this reason, system models are developed to enable
experimentation with emulation and simulation in laboratory environments—
aiding both in field test preparation and in providing supplementary post-mission
analysis from field test data. Both simulation and emulation have advantages;
simulation supports faster-than-real-time execution and complete control over the
environment while emulation tools provide results that are closer to the ground truth
by supporting real binary execution (i.e., they are capable of executing binaries that
run on actual systems).

1.2 Approach

The Cybersecurity and Electromagnetic Protection Division (CEPD) branch of the
US Army Research Laboratory (ARL) has developed a unique analysis approach
that exploits the advantages of both emulation and simulation. This approach uses
the results from several emulation executions with realistic scenarios to
automatically develop accurate models that can be used in, for example, simulators.
These models may be decision trees or complex algorithms and formulas. This
approach differs from traditional workflows where models are developed and tested
before or alongside the system development. Some issues with the traditional
approach include lack of synchronization between the actual system and the models
due to changes in requirements, manual development of highly accurate models
may be too expensive, and the models may not be made available to analysts (either
for legal reasons or due to nonexistent models). The novel approach starts instead
with the end-product (i.e., the executable code). By using the end-product it is
possible to extract not only models for the intended behavior of the systems, but
also incidental models such as resilience to unanticipated adversarial attacks.

An instance where this work has shown success is in the field of impact analysis of
attacks in mobile ad hoc networks (MANETs). First, executables that are
commonly used in MANETs such as routing protocol implementations and
Transmission Control Protocol (TCP)/User Datagram Protocol (UDP) traffic
generators along with both in-house and publicly available attacks on the
International Organization of Standardization (ISO) network Layers 3–7 were

2

identified. Next, to develop models for Army strategic and tactical technologies,
state-of-the-art emulators (e.g., the common open research emulator [CORE] and
the mobile ad hoc network emulator [MANE] were used to develop and execute
several scenarios. Each scenario consisted of various configuration parameters;
during each scenario several data were logged. Finally, these data were then
analyzed at the mid-grain level and models exhibiting high precision and recall
measures were developed.

1.3 Objectives

While this work has exhibited success, there is much room for improvement. A
critical factor in this approach is the analysis of the data collected during scenario
execution. Scenarios consist of node topologies, traffic flows, routing protocols,
and attacks on the network. Figure 1 shows the experimentation workflow.

Fig. 1 Experimentation workflow

3

The experimentation workflow consists of running several network scenarios. An
example of a single scenario is the following: chain topology (the topology in the
top left [refer to Fig.1]), US Naval Research Laboratory Optimized Link-State
Routing (NRL OLSR) Protocol used for routing, Node 1 issues a selfish attack.
Scenarios are automatically generated and executed with python and bash scripts.
The data generated from these scenarios are converted, with scripts, to Waikato
Environment for Knowledge Analysis (WEKA) format. WEKA is a machine
learning software suite and other statistical analysis toolsets. These analysis toolsets
are used to generate models. The issue is that the quality of the models is dependent
on the data collected during the scenario execution, the scenario configurations, and
the algorithms used in the statistical tools. Currently there is no way to manage the
data; sifting through the data is very time consuming and many times inhibits the
ability to quickly identify attributes that may improve the accuracy of the models.

In this report we describe our initial design and implementation of the scenario
execution data analysis platform (SEDAP) that aims at providing the following
functionality:

• A data store that keeps all log data in a structured format and associate the
logs with a scenario, analyst (whoever executed the scenario) and maintain
information about duplicate executions.

• A graphical frontend that an analyst can use to identify data of interest, run
and queue scenarios, compare data, and preview portions of data (i.e., a
quick look feature).

• The capability to handle flexible data, that is, the data collected during a
scenario may change by adding attributes or modifying the format of the
data.

A simple scenario of how this software may help an analyst follows. After running
WEKA, the attack impact model quality is worse than expected. An analyst
proceeds to further investigate the data. There exist 3 scenarios that are very similar
and should yield similar results. An analyst could use this software to
compare/contrast/rerun scenarios, and so forth.

2. Analysis of the Experimental Workflow

To design SEDAP we first conducted an informal investigation of the current data
structure along with the collection and model generation process. A virtual machine
contained the experimental setup along with all of the scripts and external tools that
were required. The following are the steps that we followed to recreate the attack

4

models (i.e., these are the detailed instructions for executing the workflow shown
in Fig. 1).

2.1 Collecting Data with CORE

CORE is an open source tool that was originally developed for experimenting with
network technologies, its primary focus is on performance. The MANET project at
ARL, Survivability/Lethality Analysis Directorate (SLAD) is using CORE to
develop efficient ways to analyze the effects of attacks (primarily at the network
layer) on systems. More information about CORE can be found at their website
(Official Navy Website).

We followed these steps to download, install, and run CORE.

1) Download the experimentation virtual machine (this includes CORE and
other required packages) from the following Uniform Resource Locator
(URL):

https://drive.google.com/open?id=0B4bNFE1fnY-
GR3FUWUh5MGNkUWc&authuser=0.

2) Import the virtual machine into VirtualBox.

3) Start the virtual machine and login with valid credentials.

4) To become more familiar with CORE, start the process by opening a
terminal window and typing: core-gui.

5) To run the experimentation workflow, open a terminal and type the
following: cd /root/IntelAttacker/./generateScenarios.sh.

The screen should now resemble the screenshot shown in Fig. 2.

5

Fig. 2 CORE scenario screenshot

Each scenario has 3 phases: beforeAttack, duringAttack, and afterAttack. These
phases are each 60 s in length, (i.e., at time 60, one of the nodes starts an attack; at
time 120 the attack ceases). When the time indicator reaches 180.0, this scenario
completes and CORE restarts with a new scenario. Data from each scenario resides
in a folder in the /root/ directory. The entire experiment takes several hours to
complete and consists of several thousands of scenario executions. Figure 3 shows
the directory structure of the data resulting from a scenario execution.

Fig. 3 Log directory structure

2.1.1 CORE Data File

The execution of a scenario in CORE generates 2 types of data files: .capture and
.mgencapture. An example of the data in these files is described in the following
subsections.

2.1.2 Capture File (Raw Data)

The raw data .capture file consists of one data entry per line. Each data entry is
made up of the data attributes shown below separated by a semicolon (;).

A sample data entry follows:

6

11;{('10.0.0.2_224.0.0.57', 'eth:ip:udp:olsr'): ('1', '*')}; {'224.0.0.0': ('0', '0.0.0.0'),
'10.0.0.10': ('9', '10.0.0.2'), … '10.0.0.2': ('1', '0.0.0.0')}; none

2.1.3 Mgencapture File (Raw Data)

The raw data .mgencapture file consists of one data entry per line. Each data entry
is made of the data attributes shown below separated by a semicolon (;).

A sample data entry follows:

5; {('10.0.0.5_10.0.0.2', 'TCP'): (34.3137370000004, 0, 48, 51,'3'), … ,
('10.0.0.10_10.0.0.2', 'UDP'): (46.422825000000365, 0,0,50,'8')}; 464.311602; 1;
321; 627; none; {''224.0.0.0': ('0', '0.0.0.0'), '10.0.0.10': ('8', '10.0.0.3'), ... ,
'10.0.0.3': ('1', '0.0.0.0')}

2.2 Using WEKA to Generate Model

WEKA is a data mining platform that consists of a suite of algorithms that can be
used to generate classifiers.

We followed the following steps to generate the models from the data collected in
Section 2.1.

Download and install WEKA from here:
1) Download and install WEKA from:

http://www.cs.waikato.ac.nz/ml/WEKA/downloading.html
(A separate WEKA tutorial for beginners is found here:
http://www.ibm.com/developerworks/library/os-WEKA1/.

2) Start WEKA.

3) The script /root/IntelAttacker/runAllToArff.sh converts the scenario data
into a format that can be read by WEKA. This has already been done for
you; download the resulting WEKA-readable file from:
https://drive.google.com/file/d/0B4bNFE1fnY-
GVmxscWVydFJTRTA/view?usp=sharing.

4) Decompress the file and open it with WEKA.

5) Remove the following attributes: 1, 2, 3, 13–20, 25, 26.

The screen should now resemble the screenshot in Fig. 4.

7

Fig. 4 WEKA preprocess window

6) Click the Classify tab.

7) Click the Choose button.

8) Find and select the REPTree classifier.

9) In the drop-down menu, select (Nom) duringLinkLost.

10) Click the Start button.

The screen should now resemble the screenshot in Fig. 5.

Fig. 5 WEKA classify window

8

2.2.1 Attribute-Relation File Format (Arff) File

The Arff file is a composite data file generated from the raw data contained in the
.capture and .mgencapture files. It consists of one data entry per line. Each data
entry is made up of the data attributes shown below separated by a comma (,).

A sample data entry follows:

/root/1_60_60_spoofingAttack_sh_1_chainCoords_scen_OLSR_chainCoords_txt,
1,10.0.0.2_10.0.0.9,1,8,UDP,7,false,37.19573757,0.133333333,0.133333333,43.3
3333333,-5.468208683,0.133333333,-6.666666667,-
5.7378654,0.033333333,0.033333333,-
6.633333333,false,false,0,false,false,spoof_10.0.0.1, -1,
true,false,false,true,true,true,true,true,true,true

2.3 Observations

After stepping through the experimental workflow and analyzing the structure of
log files, we identified the following technologies that were essential for building
SEDAP.

• A database to store the parsed data in the .mgencapture, .capture, and Arff
files.

• A web interface that can be used to view the data in an organized and
searchable way.

• Backend web services that can execute CORE, other processing scripts, and
connect the web interface with the database.

The following sections describe the design and implementation details of SEDAP.

3. SEDAP

The SEDAP is currently accessible through a web interface and provides 3 main
functions: Data Parsing, Conflict Detection, and Scenario Execution Automation.

3.1 Data Parsing

The Data Parsing function consists of a tool that reads the 3 types of data files
generated by the CORE tool upon scenario execution and from the Arff file,
extracts the information, and places it into the database. The tool takes a directory
path as a parameter and parses all the files within that directory and subdirectories.

9

The data from the .capture file is stored in the Capture table of the database; the
data from the .mgencapture file is stored in the MgenCapture table of the database;
and the data from the Arff file is stored in the Arff table in the database.
Additionally, data from the .capture file and the .mgencapture file are stored in the
CaptureFlows table and the MgenCaptureFlows table, respectively. Finally, partial
data from both the .capture and .mgencapture files are stored in the Routes table.

See Section 5 for information on specific data fields on each of the database tables
previously mentioned.

3.2 Conflict Detection

The Conflict Detection function consists of a tool that analyses the Arff table data
in the database and determines if there are any “conflicts” in each of the scenarios
stored in this table.

Figure 6 shows the pseudo code for the algorithm used to identify a conflict.

Fig. 6 Pseudo code for the conflict detection algorithm

The attributes listed below make up what is referred to as a “key”.

**@attribute fromHop {1,2,3,4,5,6,7,8,9,10}
**@attribute toHop {1,2,3,4,5,6,7,8,9,10}
**@attribute type {TCP,UDP}
**@attribute distance {1,2,3,4,5,6,7,8,9,10}
**@attribute passthrough {true, false}
**@attribute srcSpoofed {true, false}
**@attribute destSpoofed {true, false}
**@attribute hopsToSpoofed {0,1,2,3,4,5,6,7,8,9,10}
**@attribute attackName {forwarding, down, spoof_10.0.0.1,
spoof_10.0.0.2, spoof_10.0.0.3, spoof_10.0.0.4, spoof_10.0.0.5,
spoof_10.0.0.6, spoof_10.0.0.7, spoof_10.0.0.8, spoof_10.0.0.9,
spoof_10.0.0.10}
**@attribute hopsFromSpoofedToDest numeric
**@attribute attackerCloserToDestThanSpoofed {true, false}
**@attribute spoofedBetweenAttacker {true, false}

10

**@attribute isDstBetweenSpoofedAndAttacker {true, false}
**@attribute spoofedBetweenAttackergw {true, false}
**@attribute isDstBetweenSpoofedAndAttackergw {true, false}
**@attribute isAttackerBetweenSpoofedAndDst {true, false}
**@attribute isAttackerBetweenSpoofedAndDstgw {true, false}
**@attribute isSrcBetweenSpoofedAndDst {true, false}
**@attribute isSrcBetweenSpoofedAndDstgw {true, false}
**@attribute altPathWithoutAttacker {true, false}

For every row in the Arff table, the following attribute is referred to as the “value”:

***@attribute duringLinkLost {true, false}

A conflict is said to have occurred when 2 or more rows share the same key but
have a different value.

The Conflict Detection tool examines the entire Arff table in the database and looks
for such conflicts. When one is found, all the rows that share the same key are
copied to the Conflict table in the database. Every time the Conflict Detection
function is executed, the Conflict table is cleared (all existing conflicts are dropped
from the table) and the entire Arff table is analyzed for conflicts populating the
Conflict table, if any are found.

3.3 Scenario Automation

The Scenario Automation function consists of a tool that automates the execution
of a scenario in CORE, waits for the data files to be generated by CORE, and finally
parses these files into the database, as described in Section 3.1.

Execution begins by selecting the attributes (in the frontend) needed to generate a
new scenario in CORE: topology, protocol, attack, and attack node. The tool
receives these parameters through a web service and executes a bash script,
“sedap.sh”. This script serves 2 purposes, first, it sets the working directory in
Linux to /root/IntelAttacker. Note that the CORE application will not start unless it
is called from this specific directory in the Virtual Machine directory structure.
Second, the script calls the bash script (generateScenariosSedap.sh) that actually
starts CORE and passes it the 4 parameters referenced above to execute a scenario.

After CORE has been invoked, the tool waits 190 s for CORE to complete
executing the new scenario (CORE takes 180 s to complete). Once the wait is over,
the Data Parser tool is invoked by passing the directory path in which the CORE
data files were generated.

11

4. Technologies

The following technologies were used in the development of the SEDAP system.
Specific version numbers, when noted, should be followed as compatibility issues
were encountered between different versions of these technologies.

4.1 Backend Technologies

• Java 1.8

• my-sql-connector-java-5.0.8.jar

• Tomcat

• VirtualBox

• Kali MANET Virtual Machine

4.2 Frontend Technologies

• LAMPP

4.3 Database

• MySQL Server

5. Database

The SEDAP database settings and structure are described in this section.

5.1 Database Schema

Figure 7 shows the database schema. The schema is presented in an informal
notation, and a key is included to describe what each element represents. Elements
include data entities, which hold information that need to be stored, and
relationships (shown as arrows) between the data entities. The relationships, labeled
with attribute names, represent how rows from 2 tables are related to each other;
rows from one table are grouped with rows from another table if they have the same
attribute value(s).

12

Fig. 7 SEDAP object diagram

5.2 Database Table Catalog

The database consists of 8 tables: Arff, Capture, CaptureFlows, Conflict,
MgenCapture, MgenCaptureFlows, Routes, and User.

5.2.1 Arff

The Arff table stores data from the Arff file. Table 1 lists the attributes and the
implementation details of the Arff table.

13

Table 1 Arff table fields

Attribute Type

path Varchar(255)

attackNodeNum Int

description Varchar(50)

fromHop Int

toHop Int

type Varchar(50)

distance Int

passthrough Boolean

beforeDelay Double

beforeMissed Double

beforeOOO Double

beforeNumPackets Double

duringDelay Double

duringMIssed Double

duringOOO Double

duringNumPackets Double

afterDelay Double

afterMissed Double

afterOOO Double

afterNumPackets Double

srcSpoofed Boolean

destSpoofed Boolean

hopsToSpoofed Int

duringLinkLost Boolean

afterLinkLost Boolean

14

Table 1 Arff table fields (continued)

Attribute Type

attackName Varchar(50)

spoofedBetweenAttacker Boolean

isDstBetweenSpoofedAndAttacker Boolean

spoofedBetweenAttackergw Boolean

isDstBetweenSpoofedAndAttackergw Boolean

isAttackerBetweenSpoofedAndDst Boolean

isAttackerBetweenSpoofedAndDstgw Boolean

isSrcBetweenSpoofedAndDst Boolean

isSrcBetweenSpoofedAndDstgw Boolean

altPathWithoutAttacker Boolean

5.2.2 Capture

The Capture table stores partial data from the .capture file. Table 2 lists the
attributes and the implementation details of the Capture table.

Table 2 Capture table fields

Attribute Type

path Varchar(255)

time Int

node Int

attackRunning Varchar(50)
Note: Each data entry from the .capture file includes more attributes than is described in this table. The
additional data is stored in 2 separate tables: CaptureFlows and Routes.

5.2.3 CaptureFlows

The CaptureFlows table stores partial data from the .capture file. Table 3 describes
the attributes and the implementation details of the CaptureFlows table.

15

Table 3 Captureflows table fields

Attribute Type

path Varchar(255)

time Int

node Int

flow Varchar(50)

proto Varchar(80)

hopsToSrc Varchar(10)

hopsToDst Varchar(10)
Note: Each data entry from the .capture file includes more attributes than is described in this table. The
additional data is stored in 2 separate tables: Capture and Routes.

5.2.4 Conflict

The Conflict table stores the data entries from the Arff files that are in conflict.
Because this table stores .Arff data entries, the Conflict table is a replica of the Arff
table.

5.2.5 MgenCapture

The MgenCapture table stores partial data from the .mgencapture file. Table 4 lists
the data and the implementation details of the MgenCapture table.

Table 4 MgenCapture table fields

Attribute Type

path Varchar(255)

time Int

node Int

totalDelay Double

totalMissedPackets Double

totalOOO Double

totalNumPackets Double

attackRunning Varchar(50)
Note: Each data entry from the .mgencapture file includes more attributes than is described in this table. The
additional data is stored in 2 separate tables: MgenCaptureFlows and Routes.

16

5.2.6 MgenCaptureFlows

The MgenCaptureFlows table stores partial data from the .mgencapture file. Table
5 lists the attributes and the implementation details of the MgenCapture table.

Table 5 MgenCaptureFlows table fields

Attribute Type

path Varchar(255)

time Int

node Int

flow Varchar(50)

proto Varchar(50)

delay Double

missedPackets Double

ooo Double

numPackets Double

dist Varchar(3)
Note: Each data entry from the .mgencapture file includes more attributes than is described in this table. The
additional data is stored in 2 separate tables: MgenCapture and Routes.

5.2.7 Routes

The Routes table stores partial data from both the .capture and .mgencapture files.
Table 6 lists the data and the implementation details of the Routes table.

Table 6 Routes table fields

Attribute Type

path Varchar(255)

time Int

node Int

route Varchar(5000)

17

5.2.8 User

The User table is intended to store the user data for each user. Table 7 lists the data
and the implementation details of the User table.

Table 7 User table fields

Attribute Type

Uusername Varchar(30)

Ufirst_name Varchar(30)

Ulast_name Varchar(30)

Upassword Varchar(100)

Usalt Varchar(60)
Note: The SEDAP currently does not support user profiles. The table was created to support future
requirements.

5.3 Initial Database Load

Upon installing a new database server and creating the database schema previously
described, SEDAP provides the developers the ability to perform an initial data
load. This can be achieved by running the Data Parsing functionality as a standalone
tool. The LogParser tool can be executed from its “main()” method by calling the
“parseAllFilesInDirectory(directory)” method, where “directory” is the root
directory that contains the initial set of CORE data files to be parsed and loaded
into the database.

6 Backend

The backend directory structure (on the Virtual Machine) and architecture are
described in the following sections.

6.1 File Structure

The Virtual Machine that we used as our development environment contains a
specific directory structure that allows for the correct execution of the backend
tools.

CORE generates the data files and stores them in the /root/ directory. These data
files must remain in this directory for the SEDAP application to function correctly.

18

Additionally, 2 bash scripts described in Section 3.3, sedap.sh and
generateScenarioSedap.sh, must be located in the /root/IntelAttacker/ directory for
the SEDAP application to function correctly.

The .WAR file, which contains all the backend java functionality including the web
services, should be placed in the webapps directory inside the Tomcat installation
directory.

6.2 Architecture

Figure 8 shows the SEDAP backend system modules. When a module is connected
to another by a dashed arrow, the first module uses the latter. The correct
functionality of a module that uses another module depends on the correct
implementation of the second. The diagram is presented in an informal notation,
and a key is included to describe what each element represents.

Fig. 8 SEDAP backend module diagram

19

6.3 Module Catalog

The modules, represented as class elements in Fig. 8, are described in this section.

6.3.1 LogParser.java

The LogParser class is a static class/stand-alone tool that takes a directory path as
a parameter and recursively parses all the files of type .capture, .mgencapture, and
.arff in the root directory of the path and all its subdirectories. The parsed data is
then stored in the database.

LogParser <<uses>> LogDatabase

6.3.2 ConflictDetector.java

The ConflictDetector class is a static class/stand-alone tool that analyses the data
in the Arff table of the database and stores detected conflicts in the Conflict table
of the database.

ConflictDetector <<uses>> LogDatabase

6.3.3 LogDatabase.java

The LogDatabase class is used as an interface to the SEDAP database. The class
provides methods for database connection and query execution.

LogDatabase <<uses>> DATABASE

6.3.4 RunScenario.java

The RunScenario class is a static class/stand-alone tool that takes 4 attributes as
parameters, triggers the CORE application to execute a new scenario using the 4
attributes, and finally executes the LogParser by passing the root directory of the
newly generated CORE scenario.

RunScenario <<uses>> LogParser
 <<uses>> CORE (external application)

6.3.5 NewScenario.java

The NewScenario REST service is used as the interface between the frontend web
application and the RunScenario tool.

NewScenario <<uses>> RunScenario

20

6.3.6 RunConflictDetector.java

The RunConflictDetector REST service is used as the interface between the
frontend web application and the ConflictDetector tool.

RunConflictDetector <<uses>> ConflictDetector

7. Frontend

The frontend directory structure (on the Virtual Machine) and architecture are
described in the following sections.

7.1 File Structure

The SEDAP web interface pages are stored in the XAMPP root directory, htdocs.
On our Kali Linux Virtual Machine, the full path for the root directory is
/opt/lampp/htdocs/xampp/. The web pages are packaged within a folder named
FINAL. To request the web application from the localhost server, the URL
localhost must be followed by /FINAL.

7.2 Architecture

Figure 9 shows the interaction between the SEDAP web interface and the external
entities—the database and the REST services. Only a subset of the pages from the
web application are shown in this diagram. The subset includes only the pages that
are interacting with the external entities. The diagram is presented in an informal
notation, and a key is included to describe what each element represents.

21

Fig. 9 SEDAP web service diagram

7.3 Connection Catalog

The SEDAP web interface interacts with the external entities via connections.
These connections are in the form of mysqli queries and REST requests, for
interfacing with the database and with the REST services, respectively. These
connections are described in the following sections.

7.3.1 dbconnect

The following query is used to establish a connection with the database:

new mysqli(<server>, <username>, <password>, <database name>);

7.3.2 DetectConflict

1) The following query is used to select all the distinct keys from the Conflict
table. The distinct keys are used to group the rows that are in conflict.

mysqli_query($connection, "SELECT DISTINCT fromHop, toHop, type,
distance, passthrough, srcSpoofed, destSpoofed, hopsToSpoofed,
attackName, hopsFromSpoofedToDest,
attackerCloserToDestThanSpoofed, spoofedBetweenAttacker,
isDstBetweenSpoofedAndAttacker, spoofedBetweenAttackergw,
isDstBetweenSpoofedAndAttackergw, isAttackerBetweenSpoofedAndDst,
isAttackerBetweenSpoofedAndDstgw, isSrcBetweenSpoofedAndDst,
isSrcBetweenSpoofedAndDstgw, altPathWithoutAttacker FROM
Conflict");

22

2) The following query is used to count the number of times the value,
duringLinkLost, evaluates to true for the group of rows from the Conflict
table that are in conflict. This value is displayed on the DetectConflict page.

mysqli_query($connection, "SELECT COUNT(duringLinkLost) AS
trueCount FROM Conflict WHERE fromHop ='".$path['fromHop'] ."'
AND toHop ='".$path['toHop'] ."' AND type='".$path['type'] ."' AND
distance='".$path['distance'] ."' AND
passthrough='".$path['passthrough'] ."' AND
srcSpoofed='".$path['srcSpoofed'] ."' AND
destSpoofed='".$path['destSpoofed'] ."' AND
hopsToSpoofed='".$path['hopsToSpoofed'] ."' AND
attackName='".$path['attackName'] ."' AND
hopsFromSpoofedToDest='".$path['hopsFromSpoofedToDest'] ."' AND
attackerCloserToDestThanSpoofed='".$path['attackerCloserToDestThanS
poofed'] ."' AND spoofedBetweenAttacker
='".$path['spoofedBetweenAttacker'] ."' AND
isDstBetweenSpoofedAndAttacker
='".$path['isDstBetweenSpoofedAndAttacker'] ."' AND
spoofedBetweenAttackergw ='".$path['spoofedBetweenAttackergw'] ."'
AND isDstBetweenSpoofedAndAttackergw
='".$path['isDstBetweenSpoofedAndAttackergw'] ."' AND
isAttackerBetweenSpoofedAndDst
='".$path['isAttackerBetweenSpoofedAndDst'] ."' AND
isAttackerBetweenSpoofedAndDstgw
='".$path['isAttackerBetweenSpoofedAndDstgw'] ."' AND
isSrcBetweenSpoofedAndDst ='".$path['isSrcBetweenSpoofedAndDst'] ."'
AND isSrcBetweenSpoofedAndDstgw
='".$path['isSrcBetweenSpoofedAndDstgw'] ."' AND
altPathWithoutAttacker ='".$path['altPathWithoutAttacker'] ."' AND
duringLinkLost = 'true'");

3) The following query is used to count the number of times the value,
duringLinkLost, evaluates to false for the group of rows from the Conflict
table that are in conflict. This value is displayed on the DetectConflict page.

mysqli_query($connection, "SELECT COUNT(duringLinkLost) AS
falseCount FROM Conflict WHERE fromHop ='".$path['fromHop'] ."'
AND toHop ='".$path['toHop'] ."' AND type='".$path['type'] ."' AND
distance='".$path['distance'] ."' AND
passthrough='".$path['passthrough'] ."' AND
srcSpoofed='".$path['srcSpoofed'] ."' AND
destSpoofed='".$path['destSpoofed'] ."' AND
hopsToSpoofed='".$path['hopsToSpoofed'] ."' AND
attackName='".$path['attackName'] ."' AND
hopsFromSpoofedToDest='".$path['hopsFromSpoofedToDest'] ."' AND
attackerCloserToDestThanSpoofed='".$path['attackerCloserToDestThanS

23

poofed'] ."' AND spoofedBetweenAttacker
='".$path['spoofedBetweenAttacker'] ."' AND
isDstBetweenSpoofedAndAttacker
='".$path['isDstBetweenSpoofedAndAttacker'] ."' AND
spoofedBetweenAttackergw ='".$path['spoofedBetweenAttackergw'] ."'
AND isDstBetweenSpoofedAndAttackergw
='".$path['isDstBetweenSpoofedAndAttackergw'] ."' AND
isAttackerBetweenSpoofedAndDst
='".$path['isAttackerBetweenSpoofedAndDst'] ."' AND
isAttackerBetweenSpoofedAndDstgw
='".$path['isAttackerBetweenSpoofedAndDstgw'] ."' AND
isSrcBetweenSpoofedAndDst ='".$path['isSrcBetweenSpoofedAndDst'] ."'
AND isSrcBetweenSpoofedAndDstgw
='".$path['isSrcBetweenSpoofedAndDstgw'] ."' AND
altPathWithoutAttacker ='".$path['altPathWithoutAttacker'] ."' AND
duringLinkLost = false");

4) The following query uses the key to select the group of rows from the
Conflict table that are in conflict. The group is displayed on the
DetectConflict page.

mysqli_query($connection, "SSELECT * FROM Conflict WHERE
fromHop ='".$path['fromHop'] ."' AND toHop ='".$path['toHop'] ."' AND
type='".$path['type'] ."' AND distance='".$path['distance'] ."' AND
passthrough='".$path['passthrough'] ."' AND
srcSpoofed='".$path['srcSpoofed'] ."' AND
destSpoofed='".$path['destSpoofed'] ."' AND
hopsToSpoofed='".$path['hopsToSpoofed'] ."' AND
attackName='".$path['attackName'] ."' AND
hopsFromSpoofedToDest='".$path['hopsFromSpoofedToDest'] ."' AND
attackerCloserToDestThanSpoofed='".$path['attackerCloserToDestThanS
poofed'] ."' AND spoofedBetweenAttacker
='".$path['spoofedBetweenAttacker'] ."' AND
isDstBetweenSpoofedAndAttacker
='".$path['isDstBetweenSpoofedAndAttacker'] ."' AND
spoofedBetweenAttackergw ='".$path['spoofedBetweenAttackergw'] ."'
AND isDstBetweenSpoofedAndAttackergw
='".$path['isDstBetweenSpoofedAndAttackergw'] ."' AND
isAttackerBetweenSpoofedAndDst
='".$path['isAttackerBetweenSpoofedAndDst'] ."' AND
isAttackerBetweenSpoofedAndDstgw
='".$path['isAttackerBetweenSpoofedAndDstgw'] ."' AND
isSrcBetweenSpoofedAndDst ='".$path['isSrcBetweenSpoofedAndDst'] ."'
AND isSrcBetweenSpoofedAndDstgw
='".$path['isSrcBetweenSpoofedAndDstgw'] ."' AND
altPathWithoutAttacker ='".$path['altPathWithoutAttacker'] ."’”);

24

7.3.3 RawDataWindow

1) The following query is used to select the raw data from the Capture table
that is associated with the node of interest.

mysqli_query($connection, "SELECT * FROM Capture WHERE
path='".$pathname."/".$nodeFile."'");

2) The following query is used to select the raw data from the MgenCapture
table that is associated with the node of interest.

mysqli_query($connection, "SELECT * FROM MgenCapture WHERE
path='".$pathname."/".$nodeFile."'");

3) The following query is used to select the raw data from the CaptureFlows
table that is associated with the node of interest.

mysqli_query($connection, "SELECT * FROM CaptureFlows WHERE
path='".$pathname."/".$nodeFile."' AND time = '".$time."'");

4) The following query is used to select the raw data from the
MgenCaptureFlows table that is associated with the node of interest.

mysqli_query($connection, "SELECT * FROM MgenCaptureFlows
WHERE path='".$pathname."/".$nodeFile."' AND time = '".$time."'");

5) The following query is used to select the raw data from the Routes table that
is associated with the node of interest.

mysqli_query($connection, "SELECT * FROM Routes WHERE
path='".$pathname."/".$nodeFile."' AND time = '".$time."'");

7.3.4 ScenarioResults

The following query is used to select the data from the Arff table that is associated
with a scenario, where a scenario is distinguished by the pathname.

mysqli_query($connection, "SELECT * FROM Arff WHERE
path='".$pathname."'");

7.3.5 runConflictDetector

The following curl statements are used to request the RunConflictDetector REST
service.

curl_init("http://localhost:8080/RestWebserviceExample/sedap/conflictdet
ector/cd");
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_exec($ch);

25

7.3.6 runNewScenario

The following curl statements are used to request the NewScenario REST service.
The attributes for the new scenario, selected by the user, are passed as parameters
through the URL that is in the curl_init() statement.

curl_init("http://localhost:8080/RestWebserviceExample/sedap/newscenar
io/$topology,$protocol,$attack,$attackNode");
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_exec($ch);

8. Use Case

The SEDAP web interface has been tested with, and is compatible with, the
following browsers: Internet Explorer, Google Chrome, and Iceweasel. The
interface can be accessed from the localhost server on the Virtual Machine using
the following URL: localhost/Pages

Currently, user profiles are not supported. A user is directed to the home screen by
default and has access to every feature of the SEDAP interface. The following
describes the use of the SEDAP frontend to analyze a sample dataset.

8.1 Executing a New Scenario

1) Initially, the navigation bar displays at the top-left corner of the application
(see Fig. 10). Click the New Scenario tab.

Fig. 10 SEDAP navigation pane New Scenario tab

2) A page titled New Scenario displays on the screen with 5 drop-down menus
(see Fig. 11). Each drop-down menu includes the options for the attributes
required to run a new scenario, where the attributes are the names to the left
of each drop-down menu. The options shown in Fig. 11 are selected by
default.

26

Fig. 11 SEDAP New Scenario page

In the case that the Spoofing Attack is selected as the Attack Attribute, the
Options button to the right of the attribute is enabled. For all other options, the
Options button is disabled. Currently, the Traffic Flow field selection has no
functionality associated with it. CORE traverses through the traffic flows by
default.

If the Spoofing Attack option is selected for the Attack Attribute, the following
steps must be performed to select the configuration options, otherwise, skip to Step
6.

3) Click the Options button.

4) A modal with the title Configuration Options displays. Select Node 5 from
the Vulnerable Node drop-down menu shown in Fig. 12.

Fig. 12 SEDAP victim node selection

27

5) Click Submit.

6) Click Submit in the New Scenario page.

7) The pop-up alert shown in Fig. 13 displays. Click OK.

Fig. 13 CORE executive indicator

CORE runs the new scenario and the results stored. Do not navigate from the New
Scenario page until it has completed.

8) After CORE runs the new scenario and the results are stored, the pop-up
alert shown in Fig. 14 displays. Click OK.

Fig. 14 CORE executive completed indicator

9) The new scenario is listed on the Status section as shown in Fig. 15. Click
the View Results button to view the results. This redirects you to the
Results page.

Fig. 15 SEDAP View Results pane

28

8.2 View Results and Raw Data

This section includes step-by-step instructions for viewing the results.

1) Navigate to the Results page. The Results page displays the results for the
scenario of interest shown in Fig. 16.

Fig. 16 SEDAP Results page

2) Click the button labeled All selected (36) that is located above the results
table (see Fig. 17).

3) Deselect the description option. Notice the column labeled description is
removed from the table, allowing you to filter attributes.

Fig. 17 SEDAP results field filter

29

4) In the Raw Data Archive section, select 6 from the drop-down list labeled
Node shown in Fig. 18.

Fig. 18 SEDAP raw node data selection

5) Click Submit. This opens a new window that displays the raw data. This
process takes a few minutes. During this time DO NOT navigate away
from the Results page. You must wait until the new window populates the
raw data table entirely.

6) A new window displays with the raw data for the node that was selected in
Step 6 shown in Fig. 19.

30

Fig. 19 SEDAP raw data window

The pathname for the scenario that the node is associated with is displayed above
the table. The filename for the node is also displayed. If the node is the attack node,
it is followed by the .capture extension; otherwise, it is followed by the
.mgencapture extension.

7) Close the window.

8) To return to the main SEDAP page, click the SEDAP tab (located at the
top-left corner of the page).

8.3 Run Conflict Detector

This section includes step-by-step instructions for running the Conflict Detector.

1) Click the Conflicts tab.

2) On the Conflict Detection page (see Fig. 20), Click the Re-run Conflict
Detector button.

31

Fig. 20 SEDAP Conflict Detection page

3) The pop-up alert shown in Fig. 21 displays. Click OK.

Fig. 21 SEDAP conflict detection execution indicator

The Conflict Detector starts executing and conflicts are updated. Do not navigate
from the Conflict Detection page until it has completed.

4) After the conflicts are updated, the pop-up alert shown in Fig. 22 displays.
Click OK.

Fig. 22 SEDAP conflict detection completed indicator

5) The updated conflicts display on the screen.

6) Click the SEDAP tab to move to the home screen.

32

8.4 View Conflicts

This section includes step-by-step instructions for viewing conflicts. A conflict has
occurred when 2 or more rows in the database share the same key, but have a
different value. The table encapsulated within the light-blue container shows the
key for the rows that are in conflict. The conflict count to the right shows how many
times the value for those rows is true or false.

1) Move to the navigation bar (at the top-left corner of the application) and
Click the Conflicts tab.

2) The conflicts display on the screen. Click the triangle () to the left of
the data entry DuringLinkLost=TRUE.

3) An expanded tree displays shown in Fig. 23. Double-click the first row
under the data entry, DuringLinkLost=TRUE, to view the results for that
row. This redirects you to the Results page.

Fig. 23 SEDAP detailed conflict drop-down view

9. Conclusions

We have described the first step in building an analysis platform for MANET
scenario log files. With this system, analysts are now able to calculate potential
impacts of certain network-layer attacks. This system will eventually be expanded
to support various emulators and simulators. This provides an integrated
environment for conducting analysis of attack impacts on MANETs. Additionally,
we plan to enhance the capability of SEDAP by providing a mechanism (through a
plugin software architecture) for conducting model quality comparison, including
verification and validation. This consists of using emulators to collect data (running
real binaries in realistic environments) and then comparing against simulation
outputs.

33

10. References

Official Navy Website. Networks and Communication Systems Branch. Common
Open Research Emulator (CORE). [accessed 2015 Sep 29].
http://www.nrl.navy.mil/itd/ncs/products/core.

http://www.nrl.navy.mil/itd/ncs/products/core

34

List of Symbols, Abbreviations, and Acronyms

Arff Attribute-Relation File Format

ARL US Army Research Laboratory

CEPD Cybersecurity and Electromagnetic Protection Division

CORE common open research emulator

ISO International Organization of Standardization

MANE mobile ad hoc network emulator

MANET mobile ad hoc network

NRL OLSR US Naval Research Laboratory Optimized Link-State Routing

SEDAP scenario execution data analysis platform

SLAD Survivability/Lethality Analysis Directorate

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

WEKA Waikato Environment for Knowledge Analysis

35

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
(PDF) US ARMY RSRCH LAB

 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 US ARMY RSRCH LAB
(WORD ATTN RDRL SLE

VERSION) MARISSA WITHERS
 BLDG 1624 RM 210
 WSMR NM 88002-5513

 2 DIR USARL

 (PDF) RDRL SLE I
 J C ACOSTA
 J JACQUEZ

36

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	Acknowledgements
	1. Introduction
	1.1 Problem
	1.2 Approach
	1.3 Objectives

	2. Analysis of the Experimental Workflow
	2.1 Collecting Data with CORE
	2.1.1 CORE Data File
	2.1.2 Capture File (Raw Data)
	2.1.3 Mgencapture File (Raw Data)

	2.2 Using WEKA to Generate Model
	2.2.1 Attribute-Relation File Format (Arff) File

	2.3 Observations

	3. SEDAP
	3.1 Data Parsing
	3.2 Conflict Detection
	3.3 Scenario Automation

	4. Technologies
	4.1 Backend Technologies
	4.2 Frontend Technologies
	4.3 Database

	5. Database
	5.1 Database Schema
	5.2 Database Table Catalog
	5.2.1 Arff
	5.2.2 Capture
	5.2.3 CaptureFlows
	5.2.4 Conflict
	5.2.5 MgenCapture
	5.2.6 MgenCaptureFlows
	5.2.7 Routes
	5.2.8 User

	5.3 Initial Database Load

	6 Backend
	6.1 File Structure
	6.2 Architecture
	6.3 Module Catalog
	6.3.1 LogParser.java
	6.3.2 ConflictDetector.java
	6.3.3 LogDatabase.java
	6.3.4 RunScenario.java
	6.3.5 NewScenario.java
	6.3.6 RunConflictDetector.java

	7. Frontend
	7.1 File Structure
	7.2 Architecture
	7.3 Connection Catalog
	7.3.1 dbconnect
	7.3.2 DetectConflict
	7.3.3 RawDataWindow
	7.3.4 ScenarioResults
	7.3.5 runConflictDetector
	7.3.6 runNewScenario

	8. Use Case
	8.1 Executing a New Scenario
	8.2 View Results and Raw Data
	8.3 Run Conflict Detector
	8.4 View Conflicts

	9. Conclusions
	10. References
	List of Symbols, Abbreviations, and Acronyms

